Volumen:
1
Edición:
11
DOI:
Caracterización de rizobacterias promotoras de crecimiento vegetal asociadas a la halófita Suaeda SP.
Jorge Sáenz Mata
Jessica Lizbeth Coria Arellano
Victoria Jared Borroel García
Elizabeth Macías Cortés
Jesús Alejandro Valdés Nieblas
Resumen

La interrelación entre plantas y microorganismos del suelo, conocida como el “segundo genoma”, es fundamental para la salud vegetal. Esta investigación se centra en rizobacterias promotoras del crecimiento vegetal (RPCV), aisladas de Suaeda sp.. Se obtuvieron 77 cepas bacterianas utilizando medios de cultivo con y sin sal (NFb, LB y KB). Posteriormente, se evaluó su efecto en Arabidopsis thaliana mediante ensayos in vitro en placas Petri (por triplicado), utilizando suspensiones bacterianas de 1x108 UFC/ml y pepino (Cucumis sativus) en charola de germinación (10 repeticiones x tratamiento). Seis cepas favorecieron el desarrollo de raíces secundarias, según un análisis estadístico ANOVA con prueba de Tukey (P=0.05). La identificación de los bacteria islotes se realizó mediante secuenciación del gen 16S rDNA, y se evaluaron parámetros bioquímicos clave como la solubilización de fosfatos, la producción de sideróforos y del ácido indolacético (AIA), confirmando su potencial como biofertilizantes en la agricultura sustentable. Los hallazgos confirman que las cepas seleccionadas poseen características clave para
promover el crecimiento vegetal en condiciones salinas, respaldando su potencial uso en agricultura sustentable.
Palabras clave
PGPR, Suaeda sp, Arabidopsis thaliana,Cucumis sativus.
Ahmed, I., Aktar, M. W., Akter, N., & Rahman, S. M. (2021). creening of siderophore-producing salt-tolerant rhizobacteria suitable for supporting plant growth in saline soils with iron limitation. Journal of Agriculture and Food Research, 4, 100150. https://doi.org/10.1016/j.jafr.2021.100150
Alzate Zuluaga MY, Fattorini R, Cesco S and Pii Y (2024) Plant-microbe interactions in the rhizosphere for smarter and more sustainable crop fertilization: the case of PGPR-based biofertilizers. Front. Microbiol. 15:1440978. https://doi.org/10.3389/fmicb.2024.1440978
Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478–486. https://doi.org/10.1016/j.tplants.2012.04.001
Brick J.M., Bostock R.M. y Silverstone S.E. (1991). Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied and Environmental Microbiology 57 (2), 535-538. https://doi.org/10.1128/aem.57.2.535-538.1991
Caballero-Mellado, J. (2006). Rizobacterias promotoras del crecimiento vegetal y su aplicación en la agricultura sustentable. Instituto Politécnico Nacional (IPN), Centro de Investigación en Biotecnología Aplicada.
Damodaran, T., Sah, V., Rai, R. B., Sharma, D. K., Mishra, V. K., Jha, S. K., & Kannan, R. (2013). Isolation of salt tolerant endophytic and rhizospheric bacteria by natural selection and screening for promising plant growth-promoting rhizobacteria (PGPR) and growth vigour in tomato under sodic environment. Afr. J. Microbiol. Res, 7(44), 5082-5089. https://doi.org/10.5897/AJMR2013.6003
Egamberdieva, D., Wirth, S. J., Alqarawi, A. A., Abd_Allah, E. F., & Hashem, A. (2017). Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness.
Frontiers in Microbiology, 8, 2104. https://doi.org/10.3389/fmicb.2017.02104
Flores Clavo, R., Valladolid-Suyón, E., Reinoza-Farroñan, K., Asmat Ortega, C., Riboldi Monteiro, P. H., Apaza-Castillo, G. A., ... & Carreño-Farfán, C. R. (2023). Rhizobacterial isolates from Prosopis limensis promote the growth of Raphanus sativus L. under salt stress. Current Microbiology, 80(8), 269. https://doi.org/10.1007/s00284-023-03379-w
Flowers, T. J., Galal, H. K., & Bromham, L. (2008). Evolution of halophytes: Multiple origins of salt tolerance in land plants. Functional Plant Biology, 35(7), 604–607. https://doi.org/10.1071/FP08055
Francis E. Clark, Soil Microorganisms and Plant Roots, Editor(s): A.G. Norman, Advances in Agronomy, Academic Press, Volume 1, 1949, Pages 241-288, ISSN 0065-2113, ISBN 9780120007011, https://doi.org/10.1016/S0065-2113(08)60750-6.
García Mendoza, V., Hernández Vázquez, A. E., Reyes Carrillo, J. L.,
Figueroa Viramontes, U., Sáenz Mata, J., Quiroga Garza, H. M., ... & García Martínez, J. E. (2020). Las rizobacterias halófilas mantienen la calidad forrajera de Moringa oleifera cultivada en sustrato salino. Revista mexicana de ciencias pecuarias, 11(3), 718-737. https://doi.org/10.22319/rmcp.v11i3.5175
Glick BR (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology. 41(2): 109-117. https://doi.org/10.1139/m95-015
González, M. T. (2005). Microorganismos benéficos y su impacto en el desarrollo vegetal. Universidad Autónoma Chapingo, Departamento de Parasitología Agrícola.
Granda-Mora, K., Correa-Ullauri, C., Collahuazo-Reinoso, Y., & Robles-Carrión, Á. (2024). Inoculantes microbianos comerciales con PGPR obre variables productivas y económicas de fríjol común (Phaseolus vulgaris L.). Agronomía Mesoamericana, 35(1). https://doi.org/10.15517/am.2024.55654
Johansson, J. F., Paul, L. R., & Finlay, R. D. (2004). Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS microbiology ecology, 48(1), 1-13. https://doi.org/10.1016/j.femsec.2003.11.012
Hernández, A., Rives, N., Caballero, A., Hernández, A. N., & Heydrich, M. (2004). Caracterización de rizobacterias asociadas al cultivo del maíz en la producción de metabolitos del tipo AIA, sideróforos y ácido salicílico. Revista Colombiana de biotecnología, 6(1),6-13. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/536/1032
Islas-Lugo, F., Gutiérrez-García, V., Cruz-Arredondo, A., Ríos-Muñiz, D. E., & Evangelista-Martínez, Z. (2024). Evaluación de la capacidad promotora del crecimiento vegetal y actividad antagonista contra hongos fitopatógenos de las bacterias Streptomyces. Enfoques Transdisciplinarios: Ciencia y Sociedad, 2(2), 137-148. https://doi.org/10.5281/zenodo.12766054
Kloepper, J. W. (1978). Plant growth-promoting rhizobacteria on radishes. In Proc. of the 4th Internet. Conf. on Plant Pathogenic Bacter, Station de Pathologie Vegetale et Phytobacteriologie, INRA, Angers, France, 1978 (Vol. 2, pp. 879-882). : https://www.researchgate.net/publication/284682983
Lee, Y.-J., Kim, Y.-S., Hwangbo, H., Park, R.-D., Jeon, Y.-D., Song, C. H., & Kim, K.-Y. (2012). Bacillus endophyticus, a novel plant growth-promoting endophytic bacterium with antifungal activity against phytopathogens. Journal of Microbiology and Biotechnology, 22(12), 1601–1607. https://doi.org/10.4014/jmb.1207.07003
Li, N., Wang, X. X., Xue, Z., & Li, Q. (2024). Water and potassium utilization efficiency and yield and quality of cucumber (Cucumis sativus L.). Scientia Horticulturae, 330, 113025. https://doi.org/10.1016/j.scienta.2024.113025
Lynch, J. M. (1987). The Rhizosphere. Chichester, UK: John Wiley & Sons.
Maldonado, L. A., Pacheco, R. R., & Trejo, A. M. (2020). Plant growth-
promoting bacteria isolated from arid soil improve the growth and nutrient uptake in lettuce and tomato. Frontiers in Sustainable Food Systems, 4, 607355. https://doi.org/10.3389/fsufs.2020.607355
Mapelli, F., Marasco, R., Rolli, E., Barbato, M., Cherif, A., Guesmi, A.,...& Daffonchio, D. (2013). Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. BioMed Research International, 2013, 248078. https://doi.org/10.1155/2013/248078
Mendizabal-Reliz, A., Santillano-Cázares, M., Peña-Cabriales, J. J., & Gutiérrez-Miceli, F. A. (2023). Mobilization of phosphorus by Rhizobium sp. B02 and its effect on the growth of maize in reduced fertilization systems. Nutrient Cycling in Agroecosystems, 125(3), 345–357. https://doi.org/10.1007/s10705-023-10268-y
Nautiyal, C. S. 1999. An efficient microbiological growth médium for screening phosphate solubilizing microorganisms. [en linea],http://onlinelibrary.wiley.com/doi/10.1111/j.1574-6968.1999.tb13383.x/epdf
Santiago-López, L., Aguilar-Toalá, J. E., Hernández-Mendoza, A., Vallejo-Cordoba, B., Liceaga, A. M., & González-Córdova, A. F. (2018). Invited review: Bioactive compounds produced during cheese ripening and health effects associated with aged cheese consumption. Journal of dairy science, 101(5), 3742-3757. https://doi.org/10.3168/jds.2017-13465
Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. https://doi.org/10.1016/0003-2697(87)90612-9
Naveed, M., Mitter, B., Yousaf, S., Pastar, M., & Sessitsch, A. (2014). The endophyte Leclercia adecarboxylata MO1 promotes plant growth and harbours ACC deaminase and other plant growth-promoting traits. Journal of Applied Microbiology, 116(2), 498–510. https://doi.org/10.1111/jam.12393
Ness, P. (2003). Salt tolerance in halophyte species: Mechanisms and genetic control. Journal of Arid Environments, 55(1), 61–76.
Pérez-García L. A.., Mata, J. S., Rodríguez, R. P., Puente, E. O. R.,Rodríguez, J. A. T., & Rangel, P. P. (2025). Plant growth promoting rhizobacteria enhances germination and bioactive compound in cucumber seedlings under saline stress. Ecosistemas y Recursos Agropecuarios, 12(2), 4. https://doi.org/10.19136/era.a12n2.4276
Pinton, R., Varanini, Z., & Nannipieri, P. (2001). The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface. New York, NY: Marcel Dekker.
Pretty, J. (2008) Agricultural sustainability: concepts, principles and evidence Phil. Trans. R. Soc. B 363: 447–465 http://doi.org/10.1098/rstb.2007.2163
Raviv, M. (2015). The use of compost as a peat substitute for organic vegetable transplants: A review. Scientia Horticulturae, 199, 138–148. https://doi.org/10.1016/j.scienta.2015.02.012
Rodríguez Lemus, M. C., López Muraira, I. G., & Gómez Rodríguez Lemus, M. C., López Muraira, I. G., & Gómez Leyva, J. F. (2021). Evaluación de rizobacterias promotoras de crecimiento vegetal aisladas de suelos salinos en el cultivo de jitomate (Solanum lycopersicum). REPOSITORIO NACIONALCONACYT. http://repositorio.utm.mx:8080/jspui/handle/123456789/374
Schmidt, R. The terminology and classification of steles: Historical perspective and the outlines of a system. Bot. Rev 48, 817–931 (1982). https://doi.org/10.1007/BF02860875
Singh, J. S., & Mukerji, K. G. (2006). Microbial Activity in the Rhizosphere. Berlin, Germany: Springer. https://doi.org/10.1007/3-540-29420-1
Sultana, S., Alam, S., & Karim, M. M. (2021). Screening of siderophore-producing salt-tolerant rhizobacteria suitable for supporting plant growth in saline soils with iron limitation. Journal of Agricultureand Food Research, 4, 100150. https://doi.org/10.1016/j.jafr.2021.100150
Schwyn B, Neilands JB (1987). Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56 https://doi.org/10.1016/0003-2697(87)90612-9
Wahid, F., Sharif, M., Steffens, D., & Schubert, S. (2020). Phosphate solubilizing bacteria: Occurrence, mechanisms and their role in crop production. Agriculture, 10(8), 334.



