top of page
Volumen:
1
Edición:
11
DOI:
Caracterización de rizobacterias promotoras de crecimiento vegetal asociadas a la halófita Suaeda SP.

Jorge Sáenz Mata

Jessica Lizbeth Coria Arellano

Victoria Jared Borroel García

Elizabeth Macías Cortés

Jesús Alejandro Valdés Nieblas

Resumen

La interrelación entre plantas y microorganismos del suelo, conocida como el “segundo genoma”, es fundamental para la salud vegetal. Esta investigación se centra en rizobacterias promotoras del crecimiento vegetal (RPCV), aisladas de Suaeda sp.. Se obtuvieron 77 cepas bacterianas utilizando medios de cultivo con y sin sal (NFb, LB y KB). Posteriormente, se evaluó su efecto en Arabidopsis thaliana mediante ensayos in vitro en placas Petri (por triplicado), utilizando suspensiones bacterianas de 1x108 UFC/ml y pepino (Cucumis sativus) en charola de germinación (10 repeticiones x tratamiento). Seis cepas favorecieron el desarrollo de raíces secundarias, según un análisis estadístico ANOVA con prueba de Tukey (P=0.05). La identificación de los bacteria islotes se realizó mediante secuenciación del gen 16S rDNA, y se evaluaron parámetros bioquímicos clave como la solubilización de fosfatos, la producción de sideróforos y del ácido indolacético (AIA), confirmando su potencial como biofertilizantes en la agricultura sustentable. Los hallazgos confirman que las cepas seleccionadas poseen características clave para

promover el crecimiento vegetal en condiciones salinas, respaldando su potencial uso en agricultura sustentable.

Palabras clave

PGPR, Suaeda sp, Arabidopsis thaliana,Cucumis sativus.

  • Ahmed, I., Aktar, M. W., Akter, N., & Rahman, S. M. (2021). creening of siderophore-producing salt-tolerant rhizobacteria suitable for  supporting plant growth in saline soils with iron limitation. Journal of Agriculture and Food Research, 4, 100150. https://doi.org/10.1016/j.jafr.2021.100150

  • Alzate Zuluaga MY, Fattorini R, Cesco S and Pii Y (2024) Plant-microbe interactions in the rhizosphere for smarter and more sustainable crop fertilization: the case of PGPR-based biofertilizers. Front. Microbiol. 15:1440978. https://doi.org/10.3389/fmicb.2024.1440978

  • Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478–486. https://doi.org/10.1016/j.tplants.2012.04.001

  • Brick J.M., Bostock R.M. y Silverstone S.E. (1991). Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied and Environmental Microbiology 57 (2), 535-538. https://doi.org/10.1128/aem.57.2.535-538.1991

  • Caballero-Mellado, J. (2006). Rizobacterias promotoras del crecimiento vegetal y su aplicación en la agricultura sustentable. Instituto Politécnico Nacional (IPN), Centro de Investigación en Biotecnología Aplicada.

  • Damodaran, T., Sah, V., Rai, R. B., Sharma, D. K., Mishra, V. K., Jha, S. K., & Kannan, R. (2013). Isolation of salt tolerant endophytic and rhizospheric bacteria by natural selection and screening for promising plant growth-promoting rhizobacteria (PGPR) and growth vigour in tomato under sodic environment. Afr. J. Microbiol. Res, 7(44), 5082-5089. https://doi.org/10.5897/AJMR2013.6003

  • Egamberdieva, D., Wirth, S. J., Alqarawi, A. A., Abd_Allah, E. F., & Hashem, A. (2017). Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness.

  • Frontiers in Microbiology, 8, 2104. https://doi.org/10.3389/fmicb.2017.02104

  • Flores Clavo, R., Valladolid-Suyón, E., Reinoza-Farroñan, K., Asmat Ortega, C., Riboldi Monteiro, P. H., Apaza-Castillo, G. A., ... & Carreño-Farfán, C. R. (2023). Rhizobacterial isolates from Prosopis limensis promote the growth of Raphanus sativus L. under salt stress. Current Microbiology, 80(8), 269. https://doi.org/10.1007/s00284-023-03379-w

  • Flowers, T. J., Galal, H. K., & Bromham, L. (2008). Evolution of halophytes: Multiple origins of salt tolerance in land plants. Functional Plant Biology, 35(7), 604–607. https://doi.org/10.1071/FP08055

  • Francis E. Clark, Soil Microorganisms and Plant Roots, Editor(s): A.G. Norman, Advances in Agronomy, Academic Press, Volume 1, 1949, Pages 241-288, ISSN 0065-2113, ISBN 9780120007011, https://doi.org/10.1016/S0065-2113(08)60750-6.

  • García Mendoza, V., Hernández Vázquez, A. E., Reyes Carrillo, J. L.,

  • Figueroa Viramontes, U., Sáenz Mata, J., Quiroga Garza, H. M., ... & García Martínez, J. E. (2020). Las rizobacterias halófilas mantienen la calidad forrajera de Moringa oleifera cultivada en sustrato salino. Revista mexicana de ciencias pecuarias, 11(3), 718-737. https://doi.org/10.22319/rmcp.v11i3.5175

  • Glick BR (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology. 41(2): 109-117. https://doi.org/10.1139/m95-015

  • González, M. T. (2005). Microorganismos benéficos y su impacto en el desarrollo vegetal. Universidad Autónoma Chapingo, Departamento de Parasitología Agrícola. 

  • Granda-Mora, K., Correa-Ullauri, C., Collahuazo-Reinoso, Y., & Robles-Carrión, Á. (2024). Inoculantes microbianos comerciales con PGPR obre variables productivas y económicas de fríjol común (Phaseolus vulgaris L.). Agronomía Mesoamericana, 35(1). https://doi.org/10.15517/am.2024.55654

  • Johansson, J. F., Paul, L. R., & Finlay, R. D. (2004). Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS microbiology ecology, 48(1), 1-13. https://doi.org/10.1016/j.femsec.2003.11.012

  • Hernández, A., Rives, N., Caballero, A., Hernández, A. N., & Heydrich, M. (2004). Caracterización de rizobacterias asociadas al cultivo del maíz en la producción de metabolitos del tipo AIA, sideróforos y ácido salicílico. Revista Colombiana de biotecnología, 6(1),6-13. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/536/1032

  • Islas-Lugo, F., Gutiérrez-García, V., Cruz-Arredondo, A., Ríos-Muñiz, D. E., & Evangelista-Martínez, Z. (2024). Evaluación de la capacidad promotora del crecimiento vegetal y actividad antagonista contra hongos fitopatógenos de las bacterias Streptomyces. Enfoques Transdisciplinarios: Ciencia y Sociedad, 2(2), 137-148. https://doi.org/10.5281/zenodo.12766054

  • Kloepper, J. W. (1978). Plant growth-promoting rhizobacteria on radishes. In Proc. of the 4th Internet. Conf. on Plant Pathogenic Bacter, Station de Pathologie Vegetale et Phytobacteriologie, INRA, Angers, France, 1978 (Vol. 2, pp. 879-882). : https://www.researchgate.net/publication/284682983

  • Lee, Y.-J., Kim, Y.-S., Hwangbo, H., Park, R.-D., Jeon, Y.-D., Song, C. H., & Kim, K.-Y. (2012). Bacillus endophyticus, a novel plant growth-promoting endophytic bacterium with antifungal activity against phytopathogens. Journal of Microbiology and Biotechnology, 22(12), 1601–1607. https://doi.org/10.4014/jmb.1207.07003

  • Li, N., Wang, X. X., Xue, Z., & Li, Q. (2024). Water and potassium utilization efficiency and yield and quality of cucumber (Cucumis sativus L.). Scientia Horticulturae, 330, 113025. https://doi.org/10.1016/j.scienta.2024.113025

  • Lynch, J. M. (1987). The Rhizosphere. Chichester, UK: John Wiley & Sons.

  • Maldonado, L. A., Pacheco, R. R., & Trejo, A. M. (2020). Plant growth-

  • promoting bacteria isolated from arid soil improve the growth and nutrient uptake in lettuce and tomato. Frontiers in Sustainable Food Systems, 4, 607355. https://doi.org/10.3389/fsufs.2020.607355

  • Mapelli, F., Marasco, R., Rolli, E., Barbato, M., Cherif, A., Guesmi, A.,...& Daffonchio, D. (2013). Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. BioMed Research International, 2013, 248078. https://doi.org/10.1155/2013/248078

  • Mendizabal-Reliz, A., Santillano-Cázares, M., Peña-Cabriales, J. J., & Gutiérrez-Miceli, F. A. (2023). Mobilization of phosphorus by Rhizobium sp. B02 and its effect on the growth of maize in reduced fertilization systems. Nutrient Cycling in Agroecosystems, 125(3), 345–357. https://doi.org/10.1007/s10705-023-10268-y

  • Nautiyal, C. S. 1999. An efficient microbiological growth médium for screening phosphate solubilizing microorganisms. [en linea],http://onlinelibrary.wiley.com/doi/10.1111/j.1574-6968.1999.tb13383.x/epdf

  • Santiago-López, L., Aguilar-Toalá, J. E., Hernández-Mendoza, A., Vallejo-Cordoba, B., Liceaga, A. M., & González-Córdova, A. F. (2018). Invited review: Bioactive compounds produced during cheese ripening and health effects associated with aged cheese consumption. Journal of dairy science, 101(5), 3742-3757. https://doi.org/10.3168/jds.2017-13465

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. https://doi.org/10.1016/0003-2697(87)90612-9

  • Naveed, M., Mitter, B., Yousaf, S., Pastar, M., & Sessitsch, A. (2014). The endophyte Leclercia adecarboxylata MO1 promotes plant growth and harbours ACC deaminase and other plant growth-promoting traits. Journal of Applied Microbiology, 116(2), 498–510. https://doi.org/10.1111/jam.12393

  • Ness, P. (2003). Salt tolerance in halophyte species: Mechanisms and genetic control. Journal of Arid Environments, 55(1), 61–76.

  • Pérez-García L. A.., Mata, J. S., Rodríguez, R. P., Puente, E.  O. R.,Rodríguez, J. A. T., & Rangel, P. P. (2025). Plant growth promoting rhizobacteria enhances germination and bioactive compound in cucumber seedlings under saline stress. Ecosistemas y Recursos Agropecuarios, 12(2), 4. https://doi.org/10.19136/era.a12n2.4276

  • Pinton, R., Varanini, Z., & Nannipieri, P. (2001). The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface. New York, NY: Marcel Dekker.

  • Pretty, J. (2008) Agricultural sustainability: concepts, principles and evidence Phil. Trans. R. Soc. B 363: 447–465 http://doi.org/10.1098/rstb.2007.2163

  • Raviv, M. (2015). The use of compost as a peat substitute for organic vegetable transplants: A review. Scientia Horticulturae, 199, 138–148. https://doi.org/10.1016/j.scienta.2015.02.012

  • Rodríguez Lemus, M. C., López Muraira, I. G., & Gómez Rodríguez Lemus, M. C., López Muraira, I. G., & Gómez Leyva, J. F. (2021). Evaluación de rizobacterias promotoras de crecimiento vegetal aisladas de suelos salinos en el cultivo de jitomate (Solanum lycopersicum). REPOSITORIO NACIONALCONACYT. http://repositorio.utm.mx:8080/jspui/handle/123456789/374

  • Schmidt, R. The terminology and classification of steles: Historical perspective and the outlines of a system. Bot. Rev 48, 817–931 (1982). https://doi.org/10.1007/BF02860875

  • Singh, J. S., & Mukerji, K. G. (2006). Microbial Activity in the Rhizosphere. Berlin, Germany: Springer. https://doi.org/10.1007/3-540-29420-1

  • Sultana, S., Alam, S., & Karim, M. M. (2021). Screening of siderophore-producing salt-tolerant rhizobacteria suitable for supporting plant growth in saline soils with iron limitation. Journal of Agricultureand Food Research, 4, 100150. https://doi.org/10.1016/j.jafr.2021.100150

  • Schwyn B, Neilands JB (1987). Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56 https://doi.org/10.1016/0003-2697(87)90612-9

  • Wahid, F., Sharif, M., Steffens, D., & Schubert, S. (2020). Phosphate solubilizing bacteria: Occurrence, mechanisms and their role in crop production. Agriculture, 10(8), 334. 


  • https://doi.org/10.3390/agriculture10080334






Av. Tecnológico N 1555 Sur Periferico Gomez Lerdo Km. 14.5
C.P. 35150 Cd. Lerdo, Dgo


Tels. 871 725 23 71, 871 725 57 79, 871 725 58 02

WhatsApp Image 2024-03-22 at 11.53.18 (1).jpeg
WhatsApp Image 2024-03-22 at 11.53.19.jpeg
WhatsApp Image 2024-03-22 at 11.53.18.jpeg
bottom of page