top of page
Volumen:
1
Edición:
10
DOI:
Antioxidantes Presentes en Aceite de Girasol por Efecto de Nanoparticulas de Hidroxiapatita

Mercedes Georgina Ramírez Aragón

Oscar Emmanuel Gómez  García

Eduardo Arón Flores Hernández

Rubén López Salazar

Victoria Jared Borroel García

Resumen

RevistaCIDTec2024.png

La nanotecnología implica la manipulación a nivel atómico o molecular de materiales, haciendo énfasis en aquellos menores de 100 nm en al menos en una dimensión. Sus aplicaciones abarcan varios campos y se presta cada vez más atención a su potencial en la agricultura. Las nanopartículas han demostrado resultados prometedores en la germinación, el desarrollo de plantas, el tratamiento de semillas, la detección de patógenos y la identificación de agroquímicos dañinos. Las nanopartículas (NP) exhiben características fisicoquímicas notables que incluyen tamaño reducido, mayor reactividad, fuerte potencial ionizante, alta relación superficie-volumen, tolerancia mejorada al pH, estabilidad química mejorada, mayor absorbibilidad, y estabilidad térmica extendida. El objetivo de esta investigación fue examinar el impacto de las nanopartículas de hidroxiapatita en el cultivo de girasol, particularmente en los antioxidantes presentes en el aceite de girasol. Las variables evaluadas en el presente experimento incluyeron, compuestos fenólicos totales (CFT), contenido de flavonoides (FV) y actividad antioxidante (AOX). Los resultados indicaron que para las propiedades fitoquímicas analizadas los datos oscilaron entre 17.9 y 35.4 mg GAE mL-1 para CFT, 29.8 a 60.7 mg QE mL-1 para FVT y 18024.6 a 25159.5 µM TE mL-1. Las metodologías utilizadas en el presente estudio fueron realizadas de acuerdo con procedimientos ya estandarizados por distintos autores tales como el método de Folin Ciocalteau, Método de ABTS para actividad antioxidante total y Reacción por solventes para la cuantificación de flavonoides.

Palabras clave

Agronomía, compuestos bioactivos, fertilizantes, metabolitos secundarios.

  • Adeleke, B. S., & Babalola, O. O. (2020). Oilseed crop sunflower (Helianthus annuus) as a source of food: Nutritional and health benefits. Food Science & Nutrition, 8(9), 4666-4684.

  • Baba S, Malik S (2015) Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii blume. Journal of Taibah University for Science 9: 449-454.

  • Baldantoni, D., Alfani, A., Di Tommasi, P., Bartoli, G., & De Santo, A. V. (2018). Assessing the potential of sunflower (Helianthus annuus L.) for phytoremediation of heavy metal contaminated sites. Environmental Science and Pollution Research, 25(8), 8374-8381.

  • Chen, X., Wang, Y., Pan, L., Tian, Y., & Liu, Y. (2018). Impact of hydroxyapatite nanoparticles on phosphorus availability in soil and plant growth. Journal of Agricultural and Food Chemistry, 66(12), 3128-3134.

  • Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microb. 7, 1831.

  • de Silva, M., Sandaruwan, C., Hernandez, F. C. R., Sahin, O., Ashokkumar, M., Ajayan, P. M., ... & Kottegoda, N. (2022). A Greener Mechanochemical Approach to the Synthesis of Urea-Hydroxyapatite Nanohybrids for Slow Release of Plant Nutrients.

  • DeRosa, M. C., Monreal, C., Schnitzer, M., Walsh, R., & Sultan, Y. (2010). Nanotechnology in fertilizers. Nature Nanotechnology, 5(2), 91-95.

  • Domínguez E, Ordoñez E (2013) Evaluación de la actividad antioxidante, vitamina C de zumos cítricos de lima dulce (Citrus limetta), limón tahití (Citrus latifolia), limón rugoso (Citrus jambhiri Lush). Investigación y Amazonía 3: 30-35.

  • Fatima, F., Hashim, A., & Anees, S. (2021). Efficacy of nanoparticles as nanofertilizer production: a review. Environmental Science and Pollution Research, 28(2), 1292-1303.

  • Flores-Hernández, E. A., Lira-Saldívar, R. H., Ruiz-Torres, N. A., García-López, J. I., Moreno-Reséndez, A., Rodríguez-Dimas, N., ... & Mendoza-Retana, S. S. (2021). Síntesis de nanopartículas de hidroxiapatita y su efecto en plántulas de Raphanus sativus. Ecosistemas y recursos agropecuarios, 8(1).

  • Fraceto, L.F.; Grillo, R.; de Medeiros, G.A.; Scognamiglio, V.; Rea, G.; Bartolucci, C. (2016) Nanotechnology in agriculture: Which innovation potential does it have? Front. Environ. Sci. 4, 20.

  • Ghafariyan, M. H., Malakouti, M. J., Dadpour, M. R., Stroeve, P., & Mahmoudi, M. (2013). Effects of magnetite nanoparticles on soybean chlorophyll. Environmental Science & Technology, 47(18), 10645-10652.

  • Ghazani, S. M., García-Llatas, G., & Marangoni, A. G. (2013). Micronutrientes in vegetable oils: The impact of refining on tocopherols, phytosterols, and other minor compounds in sunflower oil. Journal of the American Oil Chemists' Society, 90(9), 1261-1271.

  • Giraldo, J. P.; Wu, H.; Newkirk, G. M.; Kruss, S. Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 2019, 14 (6), 541−553.

  • Hao, X., Zhang, Y., Wu, J., & Li, S. (2021). Application of hydroxyapatite nanoparticles in agriculture: A review on their effects on soil properties, plant growth, and environmental safety. Environmental Science and Pollution Research, 28(6), 6850-6864.

  • Hatami, M.; Naghdi Badi, H.; Ghorbanpour, M. Nano-elicitation of secondary pharmaceutical metabolites in plant cells: A review. J. Med. Plants 2019, 18, 6–36.

  • Hu, P.; An, J.; Faulkner, M.M.; Wu, H.; Li, Z.; Tian, X.; Giraldo, J.P. Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles. ACS Nano (2020), 14, 7970–7986.

  • Kah, M., Kookana, R. S., Gogos, A., & Bucheli, T. D. (2019). A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnology, 14(6), 532-540.

  • Khan, M. N., Mobin, M., Abbas, Z. K., & Alamri, S. A. (2020). Fertilizers and their contaminants in soils, surface and groundwater. In M. N. Khan, M. Mobin, Z. K. Abbas, & S. A. Alamri (Eds.), Nanomaterials in plants, algae, and microorganisms (pp. 1-44). Springer.

  • Lee, W. M., An, Y. J., Yoon, H., & Kweon, H. S. (2019). Toxicity and bioavailability of copper nanoparticles to terrestrial plants (lettuce, radish, and perennial ryegrass): Plant agar test for water-insoluble nanoparticles. Environmental Toxicology and Chemistry, 27(9), 1915-1921.

  • Lowry, G. V.; Avellan, A.; Gilbertson, L. M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 2019, 14 (6), 517−522.

  • Madanayake, N. H., Adassooriya, N. M., & Salim, N. (2021). The effect of hydroxyapatite nanoparticles on Raphanus sativus with respect to seedling growth and two plant metabolites. Environmental Nanotechnology, Monitoring & Management, 15, 100404.

  • Nuruzzaman, M.; Rahman, M. M.; Liu, Y.; Naidu, R. Nanoencapsulation, Nano-guard for Pesticides: A New Window for Safe Application. J. Agric. Food Chem. 2016, 64 (7), 1447−1483.

  • Prasad, T. N. V. K. V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K. R., Sreeprasad, T. S., Sajanlal, P. R., & Pradeep, T. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35(6), 905-927.

  • Prasad, R.; Bhattacharyya, A.; Nguyen, Q.D. (2017) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front. Microbiol, 8, 1014.

  • Raliya, R., & Tarafdar, J. C. (2013). ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agricultural Research, 2(1), 48-57.

  • Ramírez-Aragón, M. G., Borroel-García, V. J., López-Martínez, J. D., Nieto-Garibay, A., & García-Hernández, J. L. (2024). Extracción de compuestos antioxidantes en sandía y melón en la Comarca Lagunera. Ecosistemas y Recursos Agropecuarios, 11(1).

  • Ren, X., Sun, Y., Zhang, H., & Liu, J. (2020). Hydroxyapatite nanoparticles for removal of heavy metals from contaminated soil and water: A review. Environmental Science and Pollution Research, 27(1), 159-170.

  • Rezaei, A.; Ghanati, F.; Behmanesh, M.; Mokhtari-Dizaji, M. Ultrasound-potentiated salicylic acid–induced physiological effects and production of taxol in hazelnut (Corylus avellana L.) cell culture. Ultrasound Med. Biol. 2011, 37, 1938–1947.

  • Rivero-Montejo, S. D. J., Vargas-Hernandez, M., & Torres-Pacheco, I. (2021). Nanoparticles as novel elicitors to improve bioactive compounds in plants. Agriculture, 11(2), 134.

  • Rizwan, M., Ali, S., Ali, B., Adrees, M., Arshad, M., Hussain, A., ... & Abbas, F. (2019). Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere, 214, 269-277.

  • Rodrigues, S. M.; Demokritou, P.; Dokoozlian, N.; Hendren, C. O.; Karn, B.; Mauter, M. S.; Sadik, O. A.; Safarpour, M.; Unrine, J. M.; Viers, J.; Welle, P.; White, J. C.; Wiesner, M. R.; Lowry, G. V. Nanotechnology for sustainable food production: promising oppor- tunities and scientific challenges. Environ. Sci.: Nano 2017, 4 (4), 767−781.

  • Sabry, R., Elsayed, A., El-Ziat, R., Taha, Z., Farag, H., & AbouAitah, K. (2023). Hydroxyapatite nanoparticles as effective phosphorus nano-fertilizer on Italian parsley plants. Scientific Journal of Agricultural Sciences, 5(1), 20-36.

  • Sharma, P., Bhatt, D., Zaidi, M. G. H., Saradhi, P. P., Khanna, P. K., & Arora, S. (2018). Silver nanoparticle-mediated enhancement in growth and yield of wheat (Triticum aestivum). Journal of Plant Nutrition, 35(7), 1080-1094.

  • Siddiqui, M. H., Al-Whaibi, M. H., Firoz, M., & Al-Khaishany, M. Y. (2015). Role of nanoparticles in plants. In Nanotechnology and plant sciences (pp. 19-35). Springer, Cham.

  • Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Rajendran, V., Kannan, N., & Velmurugan, P. (2012). Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. Journal of Nanoparticle Research, 14, 1294.

  • Tripathi, D. K., Singh, S., Singh, S., Mishra, S., Chauhan, D. K., & Dubey, N. K. (2017). Micronutrients and their diverse role in agricultural crops: Advances and future prospective. Acta Physiologiae Plantarum, 39(8), 155.

  • Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246.

  • Wu, M., & Li, Z. (2022). Application of nanoparticles in agriculture: Methods of delivery and their effects on plant growth and development. Journal of Agricultural and Food Chemistry, 70(10), 2752-2761

  • Xiong, L., Wang, P., & Kopittke, P. M. (2018). Tailoring hydroxyapatite nanoparticles to increase their efficiency as phosphorus fertilisers in soils. Geoderma, 323, 116-125.

  • Zhao, L., Lu, L., Wang, A., Zhang, H., Huang, M., Wu, H., ... & Ji, R. (2020). Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. Journal of agricultural and food chemistry, 68(7), 1935-1947

bottom of page