top of page
Volumen:
1
Edición:
11
DOI:
El impacto de la dependencia en inteligencias artificiales en el pensamiento crítico y el rendimiento académico

Alfredo Orlando Hassán Barrón Quintero  

 Luis Amado González Vargas

Yasmin Lizeth  Rodríguez  Luevanos

Resumen

El uso de la inteligencia artificial (IA) en la educación superior ha revolucionado la forma en que los estudiantes acceden al conocimiento y resuelven problemas. Sin embargo, el abuso de estas herramientas puede generar efectos negativos, como la reducción del pensamiento crítico y la disminución del esfuerzo cognitivo. Este estudio analiza el impacto de la dependencia en IA sobre el rendimiento académico y el desarrollo del pensamiento crítico en estudiantes de Ingeniería en Sistemas Automotrices. A través de un enfoque cuantitativo, se aplicaron encuestas para evaluar la frecuencia de uso de IA, la motivación académica y la capacidad de resolución autónoma de problemas. Los resultados indican que los estudiantes que utilizan con frecuencia la IA tienden a depender de respuestas automáticas, evitando el análisis profundo y la exploración de soluciones alternativas. Aunque la IA facilita el aprendizaje y mejora la eficiencia en la resolución de tareas, su uso excesivo puede generar una mentalidad de soluciones rápidas que afecta la comprensión a largo plazo y la autonomía académica. Se concluye que las instituciones educativas deben fomentar un uso equilibrado de la IA, promoviendo estrategias que incentiven el desarrollo del pensamiento crítico y la resolución autónoma de problemas, garantizando así una formación integral que prepare a los estudiantes para enfrentar los desafíos del ámbito profesional con competencias sólidas en ingeniería y toma de decisiones.

Palabras clave

Aprendizaje Autónomo, Dependencia Tecnológica, Desempeño Académico, Educación en Ingeniería, Inteligencia Artificial, Pensamiento Crítico.

  • Arum, R., & Roksa, J. (2020). Academically Adrift: Limited Learning on

  • College Campuses. University of Chicago Press.

  • Carr, N. (2021). The Shallows: What the Internet Is Doing to Our Brains.

  • W.W. Norton & Company.

  • Chen, Y., & Zhou, J. (2021). Impact of Artificial Intelligence on

  • Autonomous Learning Motivation in Higher Education. Journal of

  • Educational Psychology, 765-782.

  • Choi, J., Kim, S., & Kim, H. (2021). Critical Thinking Skills and Their

  • Importance in Engineering Education. Journal of Engineering

  • Education, 73-90.

  • de la Torre, M., & Parra, J. (2023). Effects of AI Dependency on

  • Problem-Solving Skills in Engineering Students. International

  • Journal of Engineering Education.

  • Empleadores, A. N. (2022). Job Outlook 2022: The Skills Employers

  • Want.

  • Facione, P. A. (2021). Critical Thinking: What It Is and Why It Counts.

  • Insight Assessment.

  • García, P., & Torres, M. (2021). A Comparative Study of Autonomous

  • Learning Skills in Students With and Without AI Assistance.

  • Journal of Educational Technology, 250-262.

  • García, R., & Cortés, F. (2022). Inequities in Access to AI Technologies

  • in Higher Education: A Critical Analysis. Educational Review.

  • Goodwin, D., & Graham, T. (2021). Practical Skills and Critical Thinking

  • in Engineering Education: A Guide for the Modern Engineer.

  • Engineering Education Journal, 132-145.

  • Hmelo-Silver, C. E., Cummings, K. A., & Ferrier, M. D. (2019). The Role

  • of Problem-Based Learning in Developing Critical Thinking Skills.

  • International Journal of Engineering Education, 1957-1966.

  • Huang, Y., & Lin, J. (2023). Long-Term Effects of AI Dependence on

  • Problem-Solving and Creative Thinking. Journal of Educational

  • Psychology, 876-892.

  • Kim, S., & Park, D. (2022). How AI-Assisted Learning Impacts Analytical

  • and Critical Thinking Skills. Computers in Human Behavior, 107-

  • 177.


  • 285 | P á g i n a


  • h t t p s : / / d o i . o r g / 1 0 . 6 2 8 0 5 / c i d 2 0 2 5 . C I D 0 6 2

  • Kimmons, R., & Veletsianos, G. (2020). The Integration of Artificial

  • Intelligence in Higher Education: Opportunities and Challenges.

  • Educational Technology Research and Development.

  • Kuo, Y. C. (2021). A Framework for Understanding the Impact of

  • Artificial Intelligence on Learning and Critical Thinking. Computers

  • & Education, 104-168.

  • Lee, J., Han, S., & Choi, H. (2023). Balancing AI Use in Learning:

  • Comparative Analysis on Problem-Solving Skills Development.

  • International Journal of STEM Education, 102-118.

  • Li, X., & Zhao, M. (2023). Impacts of AI on Critical Thinking Skills in

  • Engineering Students. Journal of Engineering Education

  • Research, 458-472.

  • Li, Y., Chen, X., & Wu, Z. (2021). AI-Driven Adaptive Learning:

  • Enhancing Student Engagement and Learning Outcomes.

  • Computers & Education.

  • Martínez, C., & Zhao, L. (2022). AI Dependency and Its Long-Term

  • Impact on Academic Autonomy. Learning and Individual

  • Differences.

  • Nelson, A. D., & Garza, J. (2023). The Consequences of Seeking Quick

  • Solutions: How AI Affects Deep Learning in College Students.

  • Learning and Instruction, 101-538.

  • O’Connor, M., & McCarthy, M. (2020). The Relationship Between Critical

  • Thinking and Problem Solving in Engineering Education.

  • International Journal of STEM Education, 249-265.

  • Park, H., Lee, S., & Cho, Y. (2021). Problem-Based Learning as a

  • Motivational Tool for Enhancing Student Autonomy and

  • Engagement. International Journal of Educational Development,

  • 102-390.

  • Popenici, S. A., & Kerr, S. (2017). Exploring the Impact of Artificial

  • Intelligence on Teaching and Learning in Higher Education.

  • Research and Practice in Technology Enhanced Learning, 1-14.

  • Reed, A., & Lu, H. (2022). Technology Dependency in Higher Education

  • and Its Psychological Implications. Journal of Applied Research in

  • Higher Education, 390-408.

  • Ryan, R. M., & Deci, E. L. (2020). Self-Determination Theory: Basic

  • Psychological Needs in Motivation, Development, and Wellness.

  • The Guilford Press.

  • Schunk, D. H., & DiBenedetto, M. K. (2021). Motivation and

  • Achievement: Theory, Research, and Applications. Routledge.

  • Sun, L. X., & Wang, Y. (2022). Dependency on AI and Its Impact on

  • Student Motivation and Independent Learning. Computers &

  • Education, 104-545.

  • Tan, R., Zhang, W., & Hu, Y. (2021). Effects of AI Tools on Fundamental

  • Engineering Skills and Problem-Solving Abilities. International

  • Journal of STEM Education, 89-104.

  • Williams, D., Ahmed, R., & Chen, Z. (2023). The Effects of AI on

  • Reflective and Analytical Thinking in Higher Education Students.

  • Journal of Learning Analytics, 58-75.


  • Wu, Z., & Tang, L. (2020). The Influence of AI on Academic

  • Engagement and Learning Retention in Higher Education

  • Students. Journal of Educational Technology Research and

  • Development, 2995-3013.

  • Yoon, H., Kim, J., & Lee, S. (2022). The Effectiveness of Chatbots in

  • Online Learning: A Meta-Analysis. Journal of Educational

  • Computing Research, 843-860.

  • Zhang, Y., Jiang, X., & Li, Y. (2023). The Impact of AI-Driven Learning

  • on Student Motivation and Critical Thinking. Journal of Educational

  • Psychology, 249-265.

  • Zhao, Y., Zhang, H., & Zhou, Y. (2020). The Effects of AI-Assisted

  • Learning on Student Motivation and Learning Outcomes.

  • Computers in Human Behavior, 106-348.

  • Zimmerman, B. J., & Moylan, A. R. (2022). Self-Regulation: An Essential

  • Skill for Lifelong Learning. Journal of Educational Research, 113-

  • 130.

Av. Tecnológico N 1555 Sur Periferico Gomez Lerdo Km. 14.5
C.P. 35150 Cd. Lerdo, Dgo


Tels. 871 725 23 71, 871 725 57 79, 871 725 58 02

WhatsApp Image 2024-03-22 at 11.53.18 (1).jpeg
WhatsApp Image 2024-03-22 at 11.53.19.jpeg
WhatsApp Image 2024-03-22 at 11.53.18.jpeg
bottom of page